首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   23篇
化学工业   36篇
金属工艺   2篇
机械仪表   4篇
矿业工程   3篇
轻工业   6篇
石油天然气   1篇
无线电   13篇
一般工业技术   56篇
冶金工业   12篇
自动化技术   27篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   10篇
  2019年   7篇
  2018年   9篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   3篇
  2013年   6篇
  2012年   12篇
  2011年   8篇
  2010年   8篇
  2009年   5篇
  2008年   10篇
  2007年   6篇
  2006年   8篇
  2005年   10篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   3篇
  1972年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
101.
The detonation nanodiamond is a versatile low‐cost nanomaterial with tunable properties and surface chemistry. In this work, it is shown how the application of nanodiamond (ND) can greatly increase the performance of electrochemically active polymers, such as polyaniline (PANI). Symmetric supercapacitors containing PANI‐ND nanocomposite electrodes with 3–28 wt% ND show dramatically improved cycle stability and higher capacitance retention at fast sweep rate than pure PANI electrodes. Contrary to other PANI‐carbon nanocomposites, specific capacitance of the selected PANI electrodes with embedded ND increases after 10 000 galvanostatic cycles and reaches 640 F g?1, when measured in a symmetric two‐electrode configuration with 1 M H2SO4 electrolyte. The demonstrated specific capacitance is 3–4 times higher than that of the activated carbons and more than 15 times higher than that of ND and onion‐like carbon (OLC).  相似文献   
102.
Rate and equilibrium constants of weak noncovalent molecular interactions are extremely difficult to measure. Here, we introduced a homogeneous approach called equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM) to determine k(on), k(off), and K(d) of weak (K(d) > 1 μM) and fast kinetics (relaxation time, τ < 0.1 s) in quasi-equilibrium for multiple unlabeled ligands simultaneously in one microreactor. Conceptually, an equilibrium mixture (EM) of a ligand (L), target (T), and a complex (C) is prepared. The mixture is introduced into the beginning of a capillary reactor with aspect ratio >1000 filled with T. Afterward, differential mobility of L, T, and C along the reactor is induced by an electric field. The combination of differential mobility of reactants and their interactions leads to a change of the EM peak shape. This change is a function of rate constants, so the rate and equilibrium constants can be directly determined from the analysis of the EM peak shape (width and symmetry) and propagation pattern along the reactor. We proved experimentally the use of ECEEM for multiplex determination of kinetic parameters describing weak (3 mM > K(d) > 80 μM) and fast (0.25 s ≥ τ ≥ 0.9 ms) noncovalent interactions between four small molecule drugs (ibuprofen, S-flurbiprofen, salicylic acid and phenylbutazone) and α- and β-cyclodextrins. The affinity of the drugs was significantly higher for β-cyclodextrin than α-cyclodextrin and mostly determined by the rate constant of complex formation.  相似文献   
103.
Traditionally, automated slide scanning involves capturing a rectangular grid of field-of-view (FoV) images which can be stitched together to create whole slide images, while the autofocusing algorithm captures a focal stack of images to determine the best in-focus image. However, these methods can be time-consuming due to the need for X-, Y- and Z-axis movements of the digital microscope while capturing multiple FoV images. In this paper, we propose a solution to minimise these redundancies by presenting an optimal procedure for automated slide scanning of circular membrane filters on a glass slide. We achieve this by following an optimal path in the sample plane, ensuring that only FoVs overlapping the filter membrane are captured. To capture the best in-focus FoV image, we utilise a hill-climbing approach that tracks the peak of the mean of Gaussian gradient of the captured FoVs images along the Z-axis. We implemented this procedure to optimise the efficiency of the Schistoscope, an automated digital microscope developed to diagnose urogenital schistosomiasis by imaging Schistosoma haematobium eggs on 13 or 25 mm membrane filters. Our improved method reduces the automated slide scanning time by 63.18% and 72.52% for the respective filter sizes. This advancement greatly supports the practicality of the Schistoscope in large-scale schistosomiasis monitoring and evaluation programs in endemic regions. This will save time, resources and also accelerate generation of data that is critical in achieving the targets for schistosomiasis elimination.  相似文献   
104.
Ordered mesoporous carbide-derived carbon (OM-CDC) materials produced by nanocasting of ordered mesoporous silica templates are characterized by a bimodal pore size distribution with a high ratio of micropores. The micropores result in outstanding adsorption capacities and the well-defined mesopores facilitate enhanced kinetics in adsorption processes. Here, for the first time, a systematic study is presented, in which the effects of synthesis temperature on the electrochemical performance of these materials in supercapacitors based on a 1 M aqueous solution of sulfuric acid and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid are reported. Cyclic voltammetry shows the specific capacitance of the OM-CDC materials exceeds 200 F g(-1) in the aqueous electrolyte and 185 F g(-1) in the ionic liquid, when measured in a symmetric configuration in voltage ranges of up to 0.6 and 2 V, respectively. The ordered mesoporous channels in the produced OM-CDC materials serve as ion-highways and allow for very fast ionic transport into the bulk of the OM-CDC particles. At room temperature the enhanced ion transport leads to 75% and 90% of the capacitance retention at current densities in excess of ~10 A g(-1) in ionic liquid and aqueous electrolytes, respectively. The supercapacitors based on 250-300 μm OM-CDC electrodes demonstrate an operating frequency of up to 7 Hz in aqueous electrolyte. The combination of high specific capacitance and outstanding rate capabilities of the OM-CDC materials is unmatched by state-of-the art activated carbons and strictly microporous CDC materials.  相似文献   
105.
BACKGROUND: The fast development of practical applications of photopolymerizable compositions (PPCs) leads to a growing demand for the elaboration of novel monomers and simultaneously for the investigation of three‐dimensional polymerization mechanisms including the possible influence of initiator, additives, etc. The aim of the current study is to explore and clarify the role of ionic liquids (ILs) as environmentally friendly catalytic additives in the photopolymerization of poly(ethylene glycol dimethacrylate)s. RESULTS: The photopolymerization of triethylene glycol dimethacrylate (TEGDM) and poly(ethylene glycol‐400 dimethacrylate) (PEGDM) in the presence of various ILs both imidazolium‐based, i.e. [1‐methyl‐3‐alkylim]+ (CF3SO2)2N? (im = imidazolium; alkyl = C2H5, C4H9, C14H29), and phosphonium‐based, i.e. [P+ (C6H13)3(C14H29)]X? (X? = PF6?, BF4?, (CF3SO2)2N?, Cl?), as catalytic additives was investigated. The influence of the concentration of the ionic salts as well as the nature of the ILs upon the photopolymerization was studied in detail. It was found that imidazolium ILs accelerate TEGDM photopolymerization and suppress the polymerization of PEGDM. In contrast, polymerization of PEGDM with extra small amounts of phosphonium ionic solvents proceeded at a high rate and offered access to new polymers and the utilization of low‐reactivity monomers in PPCs. CONCLUSION: The most striking advantage is that the use of certain ILs permits the control of polymerization rate to achieve maximum oligomer conversion. Copyright © 2007 Society of Chemical Industry  相似文献   
106.
107.
Long‐flexible fiber orientation under the influence of a flow field is an important engineering problem. One can encounter this problem in many fields. For example in fiber reinforced thermoplastics produced in both injection and compression molding, fiber orientation affect final part properties. Fiber orientation models are constructed for short fibers in a simple shear flow case and though this case is important it is not the general case. In this work we extract rotational friction coefficients from Jeffery's model, create a general case long‐flexible fiber orientation model, and apply it in a simple shear flow. POLYM. COMPOS., 37:2425–2433, 2016. © 2015 Society of Plastics Engineers  相似文献   
108.
The recently synthesized high-performance triarylamine dyes with the dithienosilole π-conjugated spacer for efficient organic solar cells are calculated at the density functional theory (DFT) level with the Bader approach for the quantum theory of atoms in molecule (QTAIM) analysis. The presence of stabilizing intramolecular hydrogen bonds and Van der Waals interactions in the dye molecules is predicted and the energies of these interactions are estimated. The electronic bands nature in absorption spectra of the dyes is determined by the time-dependent DFT calculations with a linear response methodology using B3LYP and BMK hybrid functionals. Relations between incident light absorption intensity in the first long-wavelength band of the dye, its polarization, HOMO-LUMO orbital nature and the driving force of electron injection to the semiconductor are discussed.  相似文献   
109.
Norbornene based monomers containing the 2-phenylpyridinato–N,C2′ platinum(II) complex bonded by acetylacetonate or pyrazolonate anchor groups were synthesized and copolymerized with a carbazole-containing norbornene comonomer by ring-opening metathesis polymerization (ROMP). The photo- and electroluminescence spectra of the resulting Pt-copolymers are similar. They consist of broad bands with maxima at 495, 530 and 565 nm which arise from the mixed ligand centered (LC) and metal to ligand charge transfer (MLCT) transitions. The copolymer with the cyclometalated platinum(II) complex bonded to the polymer chain via the pyrazolonate anchor group revealed the highest brightness of electroluminescence (260 cd/m2 at 21 V).  相似文献   
110.
To understand the time course of action of any small molecule inside a single cell, one would deposit a defined amount inside the cell and initiate its activity at a defined moment. An elegant way to achieve this is to encapsulate the molecule in a micrometer‐sized reservoir, introduce it into a cell, remotely open its wall by a laser pulse, and then follow the biological response by microscopy. The validity of this approach is validated here using microcapsules with defined walls that are doped with metallic nanoparticles so as to enable them to be opened with an infrared laser. The capsules are loaded with a fluorescent antigenic peptide and introduced into mammalian cultured cells where, upon laser‐induced release, the peptide binds to major histocompatibility complex (MHC) class I proteins and elicits their cell surface transport. The concept of releasing a drug inside a cell and following its action is applicable to many problems in cell biology and medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号